SputnikLS.narod.ru

Оглавление
Продукция
Новости

 

Дополнительно:

ЭМИ
Отношение к L&S
Интересы
Наблюдение

Яндекс.Погода

Поиск:

 

 

 

Файлы:

 

В чём суть проблемы:

Основные характеристики электромагнитных излучений

Источники электромагнитных излучений

Известно, что около проводника, по которому протекает ток, возникают одновременно электрическое и магнитное поля. Если ток не меняется во времени, эти поля не зависят друг от друга. При переменном токе магнитное и электрическое поля связаны между собой, представляя единое электромагнитное поле.

Электромагнитное поле обладает определённой энергией и характеризуется электрической и магнитной напряжённостью, что необходимо учитывать при оценке условий труда.

Источниками электромагнитных излучений служат радиотехнические и электронные устройства, индукторы, конденсаторы термических установок, трансформаторы, антенны, фланцевые соединения волноводных трактов, генераторы сверхвысоких частот и др.

Современные геодезические, астрономические, гравиметрические, аэрофотосъёмочные, морские геодезические, инженерно-геодезические, геофизические работы выполняются с использованием приборов, работающих в диапазоне электромагнитных волн, ультравысокой и сверхвысокой частот, подвергая работающих опасности с интенсивностью облучения до 10 мкВт/см2.

Биологическое действие электромагнитных излучений

Электромагнитные поля человек не видит и не чувствует и именно поэтому не всегда предостерегается от опасного воздействия этих полей. Электромагнитные излучения оказывают вредное воздействие на организм человека. В крови, являющейся электролитом, под влиянием электромагнитных излучений возникают ионные токи, вызывающие нагрев тканей. При определённой интенсивности излучения, называемой тепловым порогом, организм может не справиться с образующимся теплом.

Нагрев особенно опасен для органов со слаборазвитой сосудистой системой с неинтенсивным кровообращением (глаза, мозг, желудок и др.). При облучении глаз в течение нескольких дней возможно помутнение хрусталика, что может вызвать катаракту.

Кроме теплового воздействия электромагнитные излучения оказывают неблагоприятное влияние на нервную систему, вызывают нарушение функций сердечно-сосудистой системы, обмена веществ.

Длительное воздействие электромагнитного поля на человека вызывает повышенную утомляемость, приводит к снижению качества выполнения рабочих операций, сильным болям в области сердца, изменению кровяного давления и пульса.

Оценка опасности воздействия электромагнитного поля на человека производится по величине электромагнитной энергии, поглощённой телом человека.


 
 
Ученые считают: операторы сотовой связи скрывают правду от абонентов.

Приучите детей прикладывать трубку к уху только для экстренной связи

Десять лет - и мозга нет?

На днях с новой силой разгорелся спор о том, вредны мобильники или нет. Поводом стало исследование, результаты которого обнародовал признанный в мире эксперт по борьбе с раком - австралийский нейрохирург доктор Вини Курана.

Ученый проанализировал более 100 работ. И ужаснулся. Поскольку обнаружил "существенные доказательства, число которых растет, о наличии связи между использованием мобильного телефона и злокачественными опухолями мозга». А такие опухоли, подчеркивает доктор, равносильны отсроченному смертному приговору: убивают не сразу - примерно за 10 лет. Столько времени уходит на их развитие. Что «сводит на нет официальные гарантии безопасности, основанные на исследованиях, в которых не отслеживалось пользование мобильным телефоном столь длительный срок".

Курана делает вывод: мобильники хуже сигарет, которые убивают по 5 миллионов человек в год. Разговорчивых-то сейчас раза в три больше, чем курильщиков, - около трех миллиардов против одного. Стало быть, и потери, по его прогнозам, должны расти примерно в той же пропорции.

Хорошо, что не жжет

Первая легкая паника охватила любителей сотовой связи еще в 2000 году. Тогда в мае сэр Уильям Стюарт, глава Национального комитета по радиологической защите (Великобритания), сделал неожиданное заявление. Мол, доказанной опасности для здоровья мобильные телефоны не представляют. Однако детям следует использовать их как можно реже.

Сэр, конечно, хотел успокоить. Но мнительных граждан лишь напугал. А ученых спровоцировал на противоборствующие друг с другом исследования.

Уже через год одни американцы объявили, что детский мозг поглощает излучение телефона на 50 - 70 процентов больше, чем взрослый, поскольку сам меньше. Другие доказывали, что все страхи - и взрослые, и детские - надуманны. И от излучения никакого вреда нет. Ведь оно очень слабое. Мощность не превышает 1 ватта на килограмм тела человека при норме международного стандарта безопасности 2 ватта. Мол, ничего не бойтесь.

Как раз в этом самом стандарте безопасности ныне и видит главную опасность доктор Курана. Нейрохирург объясняет: сотовые операторы, внушая людям, будто бы мобильники безопасны, не говорят, что подразумевают лишь одно. То, что излучение не может нагреть мозг. Это действительно так - доказано. Но реальный вред исходит отнюдь не от жара.

Алло, крыса слушает!

Профессор Рони Сегер, исследователь рака из Научного института Вайзмана в городе Реховот (Израиль), обнаружил, что вредно само излучение мобильного телефона, каким бы ничтожным оно ни казалось. Проверил на крысах. Они получали дозу в 10 раз меньшую, чем разговаривающий человек. В ответ в крысиных мозгах начиналось активное деление клеток. У людей такой процесс, выходящий из-под контроля, как правило, ведет к образованию опухолей.

А спустя всего 5 минут «разговора» клетки крыс начинали выделять вещество, стимулирующее деление клеток, - то же самое, что и у раковых больных.

- Мозг действительно реагирует на нетепловое излучение мобильного телефона, - говорит профессор. - И в этом суть нашего открытия.

Чуть раньше финские специалисты определили, что излучение делает более проницаемыми кровеносные сосуды мозга. Отчего сквозь них в сам мозг начинают попадать всякие яды, которые прежде «отфильтровывались» и выводились из организма.

Мобильники опаснее сигарет

Затем шведы пришли к выводу, что у пользователей со стажем более 10 лет в два раза чаще развивается опухоль слухового нерва. А те же финны, обследовав людей с опухолями нервной системы - глюомами, признали: у тех, кто говорит по мобильному давно и часто, вероятность получить опухоль на той стороне, к которой прикладывается трубка, на 39 процентов выше.

 Говорите меньше

 Вот эти и другие вредные исследования легли в основу «приговора доктора Кураны». Который, естественно, не понравился операторам мобильной связи. Мол, он противоречит 30 независимым научным оценкам и Всемирной организации здравоохранения (ВОЗ), которая не усматривает в мобильниках вреда.

А вот французское правительство призвало сократить использование сотовой связи, особенно детьми. К нему присоединяется и Германия. Да и Европейское агентство по вопросам окружающей среды.

Прав Курана или нет - на 100 процентов, конечно, неизвестно. Но, наверное, стоит от греха избавиться от привычки болтать по мобильнику, как по домашнему телефону. Мозгам будет спокойнее.

Источник - "Комсомольская правда"


Что касается ЭМ излучений, то наибольшее влияние они оказывают на иммунную, нервную, эндокринную и половую систему.

Иммунная система уменьшает выброс в кровь специальных ферментов, выполняющих защитную функцию, происходит ослабление системы клеточного иммунитета.

Эндокринная система начинает выбрасывать в кровь большее количество адреналина, как следствие, возрастает нагрузка на сердечно-сосудистую систему организма. Происходит сгущение крови, в результате чего клетки недополучают кислород.

У человека, в течение длительного времени подвергавшегося ЭМ излучению, уменьшается сексуальное влечение к противоположному полу (отчасти это является следствием банальной усталости, отчасти вызвано изменениями в деятельности эндокринной системы), падает потенция.

Изменения в нервной системе видны невооруженным глазом. Как уже отмечалось выше, признаками расстройства являются раздражительность, быстрая утомляемость, ослабление памяти, нарушение сна, общая напряженность, люди становятся суетливыми.

Таковы последствия воздействия ЭМ излучения.

Источник: comp-doctor.ru/


ВЛИЯНИЕ НА ОРГАНИЗМ СВЕРХВЫСОКОЧАСТОТНОГО   ЭЛЕКТРО-МАГНИТНОГО ПОЛЯ (СВЧ-ПОЛЯ)

Вторая половина текущего столетия характерна широким использованием источников электромагнитного излучения (ЭМИ) в различных сферах хозяйственной деятельности и в Вооруженных силах. Большое распространение на кораблях и в частях военно-морского флота получили генераторы СВЧ, применяющиеся для радиосвязи, радиолокации и других целей. В этой связи многочисленные контингенты военных моряков в процессе испытания, ремонта, наладки и эксплуатации радиотехнических систем (РТС) могут подвергаться воздействию радиоволн сверхвысоких частот ("микроволн").
Опасность такого облучения существует и для личного состава соседних частей (кораблей). При соблюдении специалистами условий эксплуатации радиотехнической аппаратуры, а личным составом техники безопасности в период работы РТС практически исключается неблагоприятное влияние СВЧ-излучений на здоровье моряков. Однако при аварийных ситуациях и при нарушении техники безопасности могут иметь место воздействия СВЧ-электромагнитного поля, значительно превышающие предельно допустимые уровни (ПДУ) облучения.
В мировой литературе накоплены многочисленные данные о возможном неблагоприятном влиянии ЭМИ радиочастотного диапазона на живой организм. Эти излучения являются мощным физическим раздражителем, который может привести к развитию функциональных и органических нарушений со стороны нервной, эндокринной, сердечно-сосудистой, иммунной, кроветворной и других систем организма.
ЭМИ могут усугублять уже имеющиеся хронические заболевания или служить фактором, способствующим возникновению заболеваний другой этиологии.

Физическая характеристика.

В отличие от других факторов окружающей среды, ЭМИ как правило не являются сопутствующими в производственном процессе, а специально генерируются для достижения технологических задач и имеют большие радиусы распространения. СВЧ ЭМ-поле (микроволны) по принятой классификации относятся к той части спектра электромагнитных колебаний, длина волны которых колеблется от 1 мм до 1 м, а частота колебаний, соответственно, - от 300000 до 300 мГц.
ЭМИ может быть непрерывным или прерывистым (импульсным). Последний режим позволяет создавать значительную мощность в каждом отдельном импульсе. Электромагнитное поле характеризуется векторами напряженности электрического (Е) и магнитного (Н) полей. При частоте колебаний ниже 300 мГц в качестве характеристики ЭМ-поля принимается силовая характеристика - напряженность электрического поля, В/м или напряженность магнитного поля - А/м. При частоте колебаний выше 300 мГц поле оценивается энергетической характеристикой - плотность потока энергии (ППЭ), Вт/м кв. (или ее производными мВт/см2, мкВт/см2).
Для количественной оценки поглощенной энергии введено понятие удельной поглощенной мощности - УПМ (SAR - specific absorpion rate - американских авторов). Под УПМ понимается количество поглощаемой мощности приходящейся на единицу массы тела, то есть - это усредненная величина, характеризующая скорость поступления энергии СВЧ-поля в поглощающее тело и представляемая как мощность отнесенная к объему - Вт/м3(мВт/см3) или массе - Вт/кг (мВт/г). Установлено, что предельной для термо-регуляции человека является 4 Вт/кг, а ПДУ - 0,4 Вт/кг.
Проблема метрологической оценки поглощенной человеком ЭМ мощности (и энергии) достаточно сложна. В настоящее время аппаратура для измерений поглощенной ЭМ мощности человеком, облученным СВЧ-полем в свободном пространстве, пока еще не разработана.
Оценку воздействия проводят по измеренной падающей на человека ППЭ и на ее основе методами математических моделей рассчитывают УПМ.
Для измерений падающей мощности непрерывных СВЧ-излучений используются отечественные измерители типа ПЗ-9 и ПЗ-16, которые также обеспечивают возможность оценки средней мощнос-ти импульсных излучений.

Механизм биологического действия.

Известно, что эффект воздействия СВЧ ЭМ-поля на биологические объекты в известной степени определяется количеством проникающей в них и поглощаемой ими электромагнитной энергии. Значительная часть энергии микроволн поглощается тканями организма и превращается в тепло, что объясняют возникновением колебания ионов и дипольных молекул воды, содержащихся в тканях. Наиболее эффективное поглощение микроволн отмечается в тканях с большим содержанием воды: кровь, тканевая жидкость, слизистая желудка, кишок, хрусталик глаза и др.
Нагрев тканей в СВЧ-поле является наиболее простым и очевидным эффектом действия микроволн на организм человека. Положение максимума температуры, его удаление от поверхности тела зависит от проводимости среды, а, следовательно, и от частоты радиоволны, действующей на ткань: с увеличением частоты (укорочением волны) максимум температуры приближается к поверхности.
Принято различать тепловое действие микроволн - при ППЭ, превышающей 10 мВт/см2, и нетепловое - при ППЭ ниже 10 мВт/см2. Такое деление условно, так как в действительности имеет место и то и другое действие.
Первичный механизм теплового действия изучен довольно обстоятельно. Обнаружено, что температурное распределение, которое устанавливается в живом организме под действием микроволн, зависит не только от длины волны, интенсивности излучаемой энергии (ППЭ) и продолжительности воздействия, но и от ряда других факторов, главными из которых являются теплообмен на поверхности нагреваемого объекта (естественное или принудительное охлаждение), тканевая структура объекта (однородность или слоистое строение), интенсивность кровоснабжения в нагреваемой области и др.
Изучение механизма нетеплового действия выдвигает гораздо более трудные задачи. Само нетепловое или как его называют специфическое действие не является столь бесспорным как тепловое действие микроволн. Специфическим нетепловое действие называют на основании предположения о существовании каких-либо первичных механизмов взаимодействия, специфических именно для ЭМИ СВЧ. Сказать что-либо вполне определенное о микроприроде специфического действия микроволн на основании имеющихся материалов трудно и, тем не менее, данные, подтверждающие действие СВЧ-поля без нагрева, существуют. Они были получены из наблюдений за реакциями целостных организмов на воздействие микроволн небольшой интенсивности.
В настоящее время существует три теории нетермического действия микроволн на организм. Эффекты слабых полей объясняют кооперативными процессами, основанными на резонансных взаимодействиях биологических макромолекул. Считается, что ими являются белковые молекулы, входящие в состав мембраны.
Нетепловые резонансные эффекты миллиметровых волн связывают с синхронизацией существующих в норме несфазированных колебаний множества осцилляторов живой клетки (например, колебания групп тема в молекуле гемоглобина эритроцита или колебания белковых молекул в мембране).
Для объяснения нетермических эффектов можно привлекается теория Фрелиха, согласно которой при воздействии ЭМ энергии может произойти полярная перестройка биомолекул, способная дать на резонансной частоте колебания большой амплитуды за счет перекачки энергии (по аналогии с химическими лазерами).
Точкой приложения любого патогенного фактора является система регуляции. Большинство жалоб и объективных данных при синдроме ЭМ воздействия укладывается в картину динамических нарушений регуляторного звена.
В обобщенном виде можно сказать, что последствия ЭМИ-облучения проявляются: угнетением и истощением процессов нервной и эндокринной регуляции; сдвигами в обмене веществ, угнетением синтетических процессов; снижением неспецифической резистентности, ослаблением иммунных процессов; снижением адаптации к факторам окружающей среды.
Следствием перечисленного будут: повышение заболеваемости (общей, инфекционной, соматической), преморбидные состояния; отягощение имеющихся хронических заболеваний; функциональные расстройства в сердечно-сосудистой, кроветворной, генеративной и других системах организма; невротические расстройства; нарушение гормонального баланса, преждевременное старение организма; возможны онкогенные процессы и отдаленные последствия среди потомства. В ряде случаев влияние ЭМИ не проявляется какой-либо клинической картиной, но изменяет резистентность организма к иным факторам среды. Возможна кумуляция повреждающих эффектов, ведущая к срыву механизмов адаптации. Наиболее выраженные нарушения обнаруживаются при действии сверхвысоких частот; с понижением частоты при эквивалентной энергии излучения глубина ответных реакций уменьшается, но направленность их остается однотипной.

В развитии патологического процесса при действии ЭМИ в его первой фазе отражаются приспособительные реакции на основе усиления деятельности ЦНС, эндокринных желез и нейрогуморальной регуляции. Вторая фаза процесса - охранительная, сопровождающаяся снижением уровня деятельности различных систем и постепенным истощением резервов. Для третьей фазы характерно развитие декомпенсации - вегетативно-сосудистых кризов.
В целом соматические последствия радиоволнового воздействия с развитием соответствующего синдрома можно трактовать как болезнь системы регуляции. В связи с отсутствием нозологической формы заболевания электромагнитной природы, при экспертизе профессиональных заболеваний следовало бы отдать приоритет наличию донозологического состояния как показателю нарушения нейроэндокринной регуляции, характерного для ЭМИ.
Реакции организма при радиоволновых (как и при многих других) воздействиях направлены на поддержание гомеостаза и являются суммой эффектов непосредственного действия ЭМИ, реакций противодействия этим эффектам и более медленных, но сильных репаративных процессов (как производного от глубины повреждения и компенсаторных возможностей организма). Все это и обусловливает неспецифичность картины расстройств ЭМ природы, и проявления болезни будут замаскированы признаками адаптивно-компенсаторного процесса. Поэтому предпатологическая оценка должна получить новый критерий - донозологические состояния, а в оценке профессиональной патологии важнейшее место следовало бы отдать показателю общей заболеваемости.
Истощение регуляции, угнетение синтетических и иммунных процессов в облученном организме в конечном итоге приведет к ослаблению его резистентности, повышенной общей и инфекционной заболеваемости и к другим, пока еще недостаточно подтвержденным, нарушениям здоровья. Пониженная адаптация облученного организма к обычным факторам окружающей среды и производства также будет способствовать болезненным реакциям организма на раздражители любой природы. Кроме того, ЭМИ существенно изменяют характер и силу ответной реакции организма.

Последствия влияния ЭМИ на организм человека.

Первые сведения о негативных последствиях радиочастотных облучений человека появились в 30-х годах. В годы второй мировой войны американскими исследователями проведен ряд работ в связи с жалобами личного состава кораблей на ухудшение здоровья при работе с РЛС, однако авторы не пришли к определенному выводу о клинической значимости микроволновых воздействий.
В послевоенные годы клинические и лабораторные исследования ЭМИ получили широкое распространение в России и за рубежом. Наибольший интерес проявлялся к диапазону СВЧ в связи с широким использованием источников этих частот и наибольшей биологической значимостью микроволн. Были выявлены повреждающее действие на ткани организма (чаще - хрусталик глаза, семенники) и функциональные расстройства важнейших систем организма - нервной, эндокринной, сердечно-сосудистой, гематоиммунной.
Проблема хронического действия малых интенсивностей ЭМИ разрабатывалась в основном отечественными клиницистами. В исследованиях выявилась отчетливая зависимость от интенсивности и длительности воздействия излучения, однотипность симптоматики хронического действия ЭМИ разных диапазонов, отсутствие специфической картины расстройств. Выявилось также различие в трактовке возникающих расстройств, признание зарубежными авторами лишь "тепловой" природы нарушений в организме, что существенно повлияло на экспертную оценку расстройств в организме и даже на устанавливаемые нормативы безопасности в различных странах.
Последствия острых интенсивных СВЧ облучений человека. Известно, что при действии высоких ("тепловых") уровней ЭМИ СВЧ-диапазона могут возникать тяжелые патологические реакции со структурными нарушениями: ожоги, катаракты хрусталика, атрофия семенников, язвы желудка и кишечника и т.п., наблюдаемые в основном в эксперименте, поскольку человек может выйти из интенсивно облучаемой зоны при ощущении "жара", тепла, создаваемого электромагнитным полем. У человека наблюдались катаракты хрусталика, выраженные острые расстройства ЦНС, нарушения слуха, слепота, вестибулярные расстройства. Гибели человека под влиянием ЭМИ не описано, однако не отвергается роль интенсивного облучения техника РЛС в развитии у него бурной картины перитонита и язвенного поражения кишечника, закончившихся смертью этого человека.
Возникающая под влиянием интенсивного действия ЭМИ картина проявляется чаще расстройствами ЦНС в виде диэнцефального синдрома, нарушений функций некоторых анализаторов, расстройств гемодинамики (пароксизмальная тахикардия, повышение АД), требующих стационарного лечения.
Диэнцефальные кризы, как правило, возникают внезапно. Проявляются приступообразными головными болями, головокружением, резкой слабостью, потемнением в глазах, бледностью кожи, профузной потливостью, дрожью тела, сердцебиением, иногда носовым кровотечением и обморочным состоянием.
В последующие 5-7 дней наблюдаются возбуждение больного, эмоциональная лабильность, вегетативная неустойчивость. В крови - нейтрофильный лейкоцитоз до 16000 в 1 мкл с нормализацией в течение недели. Кризы проходили сравнительно быстро, но в отдельных случаях выздоровление затягивалось до 30-45 дней.
Клиническая картина острого синдрома легкой и средней тяжести протекает в основном однотипно; в ней преобладает неспецифическая симптоматика (слабость, головная боль, шум в ушах, тревожный сон, тенденция к изменениям АД), в основе лежит нейродинамический механизм соматических расстройств, а нарушения, в основном, носят обратимый характер. Подобные нарушения в организме наблюдали и зарубежные авторы.
У людей, подвергшихся в течение часа действию ЭМИ умеренной интенсивности от РЛС с фазированной антенной решеткой через 3-4 часа появляется ухудшение самочувствия, выраженная головная боль, общая слабость, одышка, головокружение, колющие боли в области сердца. Позднее возникают нарушение сна, половая слабость. Большинство пострадавших предъявляют эти жалобы в течение 10- 12 дней.
При обследовании обнаруживается очаговая микросимптома-тика (неправильная форма зрачков, слабость конвергенции глазных яблок, неравномерность сухожильных рефлексов), выраженный тремор в позе Ромберга, различные вегетососудистые нарушения. Симптоматика имеет обратимой (в течение 30-40 дней) характер. При исследовании крови обнаруживается повышение числа палочкоядерных нейтрофилов до 10-го дня, постепенное повышение тромбоцитов с 5-го по 4О день после облучения; в костном мозге возросло содержание плазматических клеток.
Описаны эффекты острых воздействий ЭМИ субтепловой интенсивности и в условиях клинико-лабораторного наблюдения за состоянием организма добровольцев, подвергавшихся кратковременному (1час) облучению с ППЭ 1-3 мВт/см2 при 7-10 повторных сеансах. Непосредственные реакции при таких острых воздействиях малой интенсивности были слабо выраженными, отражали усиление возбудительных процессов ЦНС, носили фазный характер и зависели от индивидуальных особенностей организма: обнаружено усиление мышечного тремора, снижение точности движений, усиление двигательной активности во время сна, сужение поля зрения. Время сенсомоторной реакции в основном нарастало на 2-3 день облучения, нормализация наступала через 1-3 дня после воздействия (предполагается эффект кумуляции). Сдвиги в гемодинамике и ряде показателей гуморального иммунитета были недостоверными и быстро преходящими.
Зависимость от интенсивности облучения проявилась по функциональным показателям нейтрофилов крови.

Клинико-физиологические последствия хронического влияния на организм человека ЭМИ малой интенсивности.

Многочисленные клинико-физиологические наблюдения проведены в основном отечественными и зарубежными авторами среди производственных коллективов и военных контингентов, подвергающихся так называемому "нетепловому действию" ЭМИ. Полученные данные в основном отражают реакцию организма при уровнях до 1 мВт/см2 периодически превышающих их.
Картина хронического действия ЭМИ не имеет четкой очерченности, она выражается нарушениями функций нервной, эндокринной и сердечно-сосудистой систем, сдвигами в гемато-иммунной, генеративной и других системах. В изменениях нервно-психического состояния облученных некоторые авторы видят последовательные этапы.
Наиболее ранние последствия облучения возникают лишь у небольшой (до 3 процентов численности) группы работающих с ЭМИ. Через 3-6 месяцев профессионального контакта у этой группы работающих возникают усталость и ухудшение самочувствия к концу рабочего дня, раздражительность, головные боли, снижение работоспособности, сонливость, боли в области сердца, эмоциональная неустойчивость, тревожность. Постепенно субъективная симптоматика сглаживается и исчезает, объективная практически отсутствует (в этот период регистрируются лишь случаи брадикардии и гипотонии, в 2-3 раза чаще, чем среди необлученных).
Основное развитие отсроченных последствий регистируется различными авторами через 2-5 и даже 10 лет от начала работы с ЭМИ. По-видимому, такие сроки определяются как интенсивностью излучений, так и индивидуальными особенностями организма. На этом этапе также превалирует субъективная симптоматика, но налицо и объективная картина расстройств. Примерно 10-40 процентов работающих предъявляют жалобы на раздражительность, упорные головные боли, головокружение, периодическую тошноту, боли в области сердца и сердцебиение, утомляемость и прогрессирующую слабость, ослабление мужской потенции, снижение работоспособности, сонливость днем, нарушение ночного сна, ослабление памяти. При объективном исследовании выявляется эмоциональная неустойчивость, подавленность, снижение внимания, депрессия, игра вазомоторов, тремор пальцев рук, гипергидроз, неустойчивость в позе Ромберга, красный дермографизм. Наблюдаются неустойчивость АД и сосудистых реакций при функциональных пробах, изменения внутрисердечной проводимости, признаки гипоксии миокарда, нарушение вегетативной регуляции сердечного ритма, тенденция к лейкопении, тромбоцитопении и снижению ФАЛ, повышение гистамина и билирубина (непрямые фракции) в крови, повышение потребления кислорода, нерезко выраженные сдвиги в углеводном и минеральном обмене. Сердечно-сосудистая симптоматика укладывается в картину нейро-циркуляторной дистонии по кардиальному или гипертоническому типу. Появляются признаки нарушения центральной и периферической гемодинамики.
Выраженные вегетативные сдвиги и расстройства гемодинамики наблюдались у людей, периодически облучавшихся с ППЭ 3-4 мВт/см2.
На третьем этапе заболевания, в более поздние сроки трудового стажа картина расстройств ЭМ природы прогрессирует, усугубляются жалобы больных, возникают явления навязчивых страхов, вязкость мышления, становятся выраженными нарушения гемодинамики. В данном случае можно говорить о развившемся заболевании (астено-вегетативном, астено-невротическом синдроме и нейро-циркуляторной дистонии). Нередко обнаруживается микросимптоматика нарушения функции черепно-мозговых нервов, симптомы орального автоматизма, повышенные сухожильные рефлексы, иногда - парестезии.
Растет число повторяющихся случаев ОРЗ, гриппа, ангин, радикулита. В 22-40 процентов выявляется отрицательное действие ЭМИ на эндокринную систему женщин, в 18-29 процентов - на течение беременности (выкидыши, токсикозы, кровотечения, слабость родовой деятельности).
Периодически возникают и учащаются диэнцефальные кризы. Нейро-циркуляторная дистония определяется у 60 процентов предъявляющих жалобы на здоровье; в основном развивается гипертоническая болезнь, возможны раннее развитие ишемической болезни сердца, коронарная недостаточность, динамическое расстройство мозгового кровообращения. Гипертонические реакции в основном наблюдаются при стаже свыше 5-10 лет. Состояние усугубляется присоединением хронического гастрита, язвенной болезни, дискинезии желудочно-кишечного тракта и желчных путей. Выявляется дисбаланс в эндокринной системе (угнетение половой функции, увеличение щитовидной железы). Снижаются показатели клеточного и гуморального иммунитета, возрастают аутоаллергические процессы.
Гематологическая картина расстройств ЭМ природы в основном характеризуется неустойчивостью показателей белой крови.
Отклонения от нормы показателей крови при хроническом облучении как правило незначительны и связаны с уровнями ЭМИ, близкими к тепловым. При длительном (около 10 лет) облучении с ППМ в несколько мВт/см2 появляется выраженная цитопеническая реакция (уменьшение числа лейкоцитов, тромбоцитов и даже эритроцитов).
Влияние малых интенсивностей (до 1 мВт/см2) обусловливает наклонность к лейкопении, нейтропении и относительному лимфоцитозу.
Однако при повторных интенсивных облучениях СВЧ наблюдалось прогрессирующее снижение ретикулоцитов, снижение гемоглобина, гематокрита, общего белка и числа лимфоцитов.
Снижение числа сегментированных форм лейкоцитов и тромбоцитов отмечено у 25 процентов работающих при ППЭ 9 мВт/см2 и у 12 процентов - при ППЭ 1,6 мВт/см2 и ниже. Вместе с тем наблюдалось и повышение количества лейкоцитов и лимфоцитов у 38 процентов обследованных при ППЭ 13 мВт/см2 в течение 6-9 месяцев; у 30 процентов из этой же группы отмечено снижение числа эритроцитов. В костном мозге - тенденция к усилению процессов регенерации, нерезко выраженные цитогенетические изменения в хромосомах лимфоцитов. Выявляется качественная неполноценность эритроцитов в периферической крови, моноцитоз, базбфилия эритроцитов; у трети больных снижена СОЭ.
Систематическое действие полей СВЧ и ВЧ ведет к повышению общего белка и а- и р-глобулинов в сыворотке практически здоровых людей. В выраженной стадии заболевания нарушения обмена нарастают; у половины обследованных возрастало содержание холестерина, а у 65 процентов - увеличивалась концентрация гистамина в 1,5-2 раза, сахарные кривые были атипичными - уплощенные, так называемые "диабетические", и двугорбые - при сахарной нагрузке.

По данным ряда авторов у длительно работающих с источниками СВЧ наиболее часты гипертензия, миокардиодистрофия, хронические гастрит и холецистохолангит; у 60 процентов обследованных обнаружены гемодинамические расстройства в бассейне центральной артерии сетчатки глаза.
Однако и в этом комплексе расстройств нет определенной системной патологии. Симптоматика неспецифическая, функциональные сдвиги можно обнаружить практически во всех наиболее важных системах (нервной, эндокринной, иммунной, сердечно-сосудистой, в системе крови и обмене веществ), что говорит о нарушении регуляции физиологических процессов в организме.
Ряд зарубежных авторов не выявили отрицательных отклонений в состоянии здоровья персонала, в течение 10-12 лет обслуживающего источники СВЧ.
Наблюдаются противоречивые результаты при эпидемиологических исследованиях. По-видимому, этому способствует отсутствие четкой симптоматики и неоднозначность критериев эпидобследования.
Специфических изменений в организме под влиянием ЭМИ пока не найдено, в связи с чем предлагаемая ранее нозологическая форма "радиоволновая болезнь" не была принята. Не существует и теории о возможном специфическом действии ЭМИ. В целом картина последствий длительного РЧ облучения проявляется в интенсивных циркуляторных и склеротических процессах, в преждевременном старении.
Проблему отдаленных последствий ЭМ облучения человека, по-видимому, следует осветить с позиций влияния ЭМИ на возникновение раковых заболеваний, нарушения генеративной функции у облученных и функциональную неполноценность потомства подвергавшихся облучению людей.
Соматостохастические эффекты популяции человека носят вероятностный характер, и причину их появления (например, лейкемии, рака, общего нарушения состояния здоровья с сокращением продолжительности жизни и др.) в каждом отдельном случае установить невозможно. Стохастическими являются и генетические эффекты, и выявление их возможно статистическими методами также лишь в облученной популяции.
Пока еще нет убедительных доказательств изменения плодовитости облученного человека, поскольку предварительных обследований, как правило, не проводилось, однако зафиксированы факты олигоспермии и бесплодия у ранее плодовитых мужчин при неоднократном облучении микроволнами высокой интенсивности. В другой работе показаны последствия длительного (в среднем 8 лет) облучения: достоверное снижение количества сперматозоидов на 1 мл спермы и процента подвижных сперматозоидов в эякуляте.
При длительном наблюдении за состоянием здоровья работающих обнаруживается снижение сперматогенеза, изменения менструального цикла, нарушения развития плода, врожденные дефекты, сниженную лактацию у матерей, работающих с ЭМИ. Однако все эти последствия связаны с интенсивными облучениями. Несколько случаев пороков развития зарегистрировано у потомства женщин, проходивших курс диатермии на ранних стадиях беременности.
Методами опроса установлено снижение половой потенции мужчин, работающих с ЭМИ. При эпидемиологических обследованиях выявлена связь частоты пороков развития у детей с насыщенностью населенной зоны городов источниками ЭМИ.
Тератогенные проявления в потомстве облучавшихся родителей у человека не зафиксированы. В экспериментах данные о тератогенезе при ЭМИ противоречивы. Онкогенное воздействие ЭМИ на настоящий момент убедительно не доказано.
Генетические нарушения в потомстве облученных родителей в литературе практически не представлены. Есть единичные сведения о сдвигах в физическом развитии детей на облучаемых территориях.
В экспериментах на животных выявлено влияние ЭМИ на ДНК, на гонады, на эмбрион, плод. Получены данные о мутагенном действии ЭМИ на живых системах разного уровня организации, однако эти эффекты зависят от условий облучения. Возможность возникновения генетических последствий у человека при действии ЭМИ также отрицать нельзя.

Диагностика и классификация.

При диагностировании СВЧ-поражений нельзя не учесть того факта, что о прямой связи возникших изменений с микроволновым излучением мы можем говорить только в случае острых поражений, когда клиническая картина возникла в ближайшее время после облучения и нет других причин для ее возникновения.
Диагноз острого поражения СВЧ полем должен ставиться на основании данных тщательной всесторонней экспертизы облучения, жалоб больного и результатов клинического обследования пострадавшего в условиях стационара. При проведении дифференциальной диагностики необходимо исключение всех причин, могущих приводить к аналогичным поражениям.
Установление диагноза хронического поражения микроволнами нередко встречает большие затруднения. Некоторые авторы трактуют все изменения, найденные у персонала РТС как СВЧ поражения. Между тем в деятельности специалистов РТС имеется комплекс других неблагоприятных факторов среды (высокая температура, шумы, низкая освещенность и др.), среди которых СВЧ поле не всегда является основным фактором. Отсутствие специфических симптомов микроволнового поражения приводит к тому, что некоторые врачи ошибочно трактуют нарушения, наступающие в организме у специалистов РТС вне связи с СВЧ воздействием как его последствия.
Эта связь правомерна лишь в тех случаях, когда астеническое состояние, нейроциркуляторные, эндокринные и обменные нарушения, изменения в системе крови и другие сдвиги возникают у лиц, которые действительно в течение длительного времени (месяцы, годы) работают в сфере СВЧ поля при интенсивностях, как правило, превышающих ПДУ. При этом исключаются другие причины, приводящие к аналогичным изменениям в организме.
Роль СВЧ поля как фактора риска в развитии заболевания более вероятна при наличии определенной последовательности в развитии отдельных симптомов при ведущей роли функциональных изменений со стороны нервной системы: длительный астенический фон с неврастеническими проявлениями, вегетативно-сосудистая дисфункция, которая в последующем может протекать с кризовыми состояниями и признаками гипоталамической недостаточности. При решении вопроса о роли микроволнового излучения в развитии астенических состояний, нейроциркуляторных дистоний, дистрофии миокарда и других висцеральных дисфункций надо исключить возможность хронической лучевой болезни, гиповитаминоза, черепно-мозговой травмы, интоксикаций, вялотекущего ревматизма и многих других причин.
При наличии признаков гипоталамической недостаточности дифференциальный диагноз должен проводиться, прежде всего, с диэнцефальными синдромами инфекционного и травматического происхождения.
Таким образом, при установлении диагноза поражения микроволнами (наряду с выявлением характерных клинических симптомов) ведущую роль играет правильно собранный профессиональный анамнез (длительность работы с генераторами СВЧ, характер контакта с микроволнами в течение суток, месяца, года, функциональные обязанности, маршруты передвижения во время работы, время появления болезненных расстройств и их связь с характером работ, выполняемых в период развития расстройств) и объективная характеристика условий работы, включая данные тщательно проведенной дозиметрии при различных режимах работы РТС.
Работами многих отечественных клиницистов определена клиническая картина расстройств электромагнитной природы. Однако отсутствие специфической симптоматики не позволило принять предлагаемую 25-30 лет назад нозологическую форму выявленных расстройств "радиоволновая болезнь". Клиническая картина последствий ЭМ-облучения формулируется в литературе лишь на уровне синдромов.
С 60-х годов сложилась синдромная классификация последствий влияния радиочастот: неврастенический синдром с вегетативными, эндокринными и трофическими расстройствами, нейроциркуляторной дистонией и катарактой хрусталика глаза. Также клинику этих расстройств определяют как "синдром хронического воздействия СВЧ-поля".
Различают 5 синдромов в клинике последствий СВЧ-облучения: вегетативный, диэнцефальный, астенический, астено-вегетативный и ангиодистонический. Садчиковой М. Н. предложено понятие "радиоволновая болезнь", как нозологическая форма вызываемых электромагнитными излучениями расстройств в организме. При этом по степени тяжести предлагалось различать три стадии: начальную, умеренно выраженную и выраженную, с различными клиническими синдромами.
В официальной медицинской документации последствия влияния ЭМИ классифицируются как "последствия острого и хронического воздействия СВЧ-поля".
Клиническая классификация проявлений расстройств электромагнитной природы (Д. В. Гусаров) включает в себя характеристику облучения по параметрам ЭМИ и условиям воздействия, клинические формы поражения, степень их тяжести и варианты течения:

а) острое локальное поражение микроволнами III степени, катаракта обоих глаз (одномоментное облучение, ППЭ 30 мВт/см2, режим генерации непрерывный;
б) хроническое поражение микроволнами III степени, нейроциркуляторная дистония по смешанному типу, групповые экстрасистолы из обоих желудочков;
в) хроническое поражение микроволнами II степени, астенический синдром, функциональное расстройство желудка с понижением кислотоообразующей функции.

Выделяют легкую, среднюю и тяжелую степени СВЧ-поражения.
-К легким поражениям (острым и хроническим) относят преходящие функциональные изменения в организме, не требующие длительного лечения и существенно не снижающие трудоспособности пострадавших.
-Поражения средней тяжести характеризуются стойкими функциональными нарушениями, требующими длительного и часто повторного лечения и снижающими трудоспособность пострадавших в последующем.
-При тяжелой степени поражения наблюдаются органические повреждения и выраженные дистрофические изменения тех или иных систем, тяжелые функциональные расстройства (диэнцефальные кризы, симптомы коронарной недостаточности и т.д.). Полного выздоровления может и не наступить. Эти лица потребуют длительного лечения и, возможно, специального трудоустройства или перевода на инвалидность. Возможны рецидивы СВЧ поражений при интеркуррентных заболеваниях.

Профилактика и лечение.

Первостепенное значение при профилактике вредного действия СВЧ излучений отводится контролю за соблюдением личным составом в процессе учебно-боевой деятельности установленных Приказом МО РФ © 167 от 30.04.97 г. санитарно-гигиенических норм микроволнового облучения.
Так, интенсивность облучения в СВЧ-поле не должна превышать следующих предельно допустимых величин: для 8 часов работы - ППЭ не более 25 мкВт/см2; независимо от времени работы максимально допустимая величина - ППЭ не более 1000 мкВт/см2.
Важное значение приобретает создание системы надежной защиты людей от вредного влияния СВЧ-излучений. Все защитные мероприятия можно объединить в две группы: коллективные меры защиты и индивидуальные меры защиты. Первые предусматривают групповую защиту обслуживающего персонала и других лиц, находящихся в зонах воздействия излучающих устройств от СВЧ воздействия. Вторые - непосредственную защиту каждого специалиста, подвергающегося опасности облучения.
Коллективные меры защиты могут быть преимущественно организационными или преимущественно техническими. К организационным мерам можно отнести такие, как рациональное расположе-ние излучающих устройств на местности с соблюдением необходи-мых пространственных разрывов между ними и жилыми зданиями, поднятие антенных систем над окружающей местностью, установле-ние для работающих станций определенных безопасных секторов ра-боты и углов места и т.д. Примером технических мер защиты могут служить различные виды экранирования.
В качестве индивидуальных средств защиты используются специальные защитные очки и шлемы и специальная защитная одежда.
Медико-гигиеническая профилактика не ограничивается контролем за соблюдением установленных гигиенических условий (в том числе дозиметрический контроль). Она включает проведение медицинского отбора специалистов для работы с генераторами СВЧ поля, а также постоянное диспансерное наблюдение за работающими. Один раз в год специалисты РТС и РПС проходят комиссионное медицинское обследование, в котором обязательно участвуют терапевт, невропатолог и окулист.

Большую роль в профилактике вредных последствий СВЧ воздействия на организм играет повышение его устойчивости к различным вредным факторам. В первую очередь усилия должны быть направлены на устранение всех причин, вызывающих ослабление организма. Весьма важны, например, своевременная санация хронических очагов инфекции, своевременное и тщательное лечение возникших заболеваний.
Рекомендации общего характера сводятся к урегулированию режима труда и отдыха, полноценному регулярному питанию, приему витаминов, особенно "С" и группы "В" и ликвидации вредных привычек. Если имеют место переутомление и нарушение сна, которые играют большую роль в развитии функциональных расстройств сердечно-сосудистой и нервной систем, показано восстановление нормального ритма дежурств и отдыха, прогулки перед сном, легкий спорт.
Необходимо в выходные дни и в период очередного отпуска рекомендовать активный отдых с умеренной физической нагрузкой на открытом воздухе, плавание, туризм и т.д. Одной из форм профилактики СВЧ-поражений является пребывание контактирующих с микроволнами лиц в санаториях и домах отдыха.
При хроническом переоблучении легкой степени лечение обычно проводят амбулаторно, при средней и тяжелой степени заболевания - в условиях госпиталя. Применяются симптоматические, общеукрепляющие и тонизирующие средства. Назначают препараты валерианы, поливитамины, при гипотонии - настойку китайского лимонника или женьшеня, а также настойку левзеи (по 10-15 капель 3 раза в день).
В госпитальных условиях применяют глютаминовую кислоту по 0,5 три раза в день, внутривенно 40 процентный раствор глюкозы по 20 мл с аскорбиновой кислотой (5 процентный раствор 2 мл) и витамином В, (0,6 процентов 1 мл) на курс 10-15 вливаний; внутримышечно 10 процентный раствор глюконата кальция по 10 мл 10-15 инъекций. При нарушении сна - барбамил, бромурал. Вместе с ними целесообразно назначать димедрол или пипольфен 2-3 раза в день. При стойкой гипотонии с успехом применяют стрихнин (0,1% раствор по 0,5 или 1,0 мл подкожно). Умеренная лейкопения проходит без специального лечения. Более стойкая лейкопения требует назначения стимуляторов (пентоксил 0,3 по 1 пор. 3 раза в день или лейкоген по 1 табл. 3 раза в день). Медикаментозная терапия сочетается с физиотерапевтическими процедурами (хвойные и углекислые ванны, гальванический воротник по Щербаку, лечебная гимнастика и др.).
При остром воздействии СВЧ-поля первым мероприятием должно быть удаление пострадавшего из зоны облучения. Патогенетического лечения не существует. Назначается симптоматическая терапия в зависимости от тяжести поражения и клинических проявлений. Ведется борьба с острыми нарушениями сердечно-сосудистой системы, кровотечениями и другими нарушениями.

На главную страницу


Электромагнитные излучения

Электромагнитные излучения -  электромагнитные волны, возбуждаемые различными излучающими объектами, - заряженными частицами, атомами, молекулами, антеннами и пр.

В зависимости от длины волны различают гамма-излучение, рентгеновское, ультрафиолетовое излучение, видимый свет, инфракрасное излучение, радиоволны и низкочастотные электромагнитные колебания.

 

В современном мире проблема электромагнитных излучений является одной из самых актуальных и требующей повышенного внимания.

Разработка и освоение новых технологий, создание приборов радиоэлектроники, оргтехники и бытовой техники и т.д. поражает своим размахом. И, соответственно, применяя все новинки промышленного достижения, мы облегчаем свою жизнь, делаем ее более комфортной, интересной и очень удобной.

Но, с ростом числа людей, пользующихся новинками промышленности, растет, и число людей у которых появились проблемы со здоровьем, связанные с электромагнитными излучениями. 

 

Микроволновые печи, телевизоры, компьютеры, холодильники, пылесосы, и многие другие приборы прочно заняли свои места в наших квартирах. С принтерами и сканерами мы контактируем на рабочих местах, а мобильным телефоном, вообще, пользуемся в течение всего дня. Назначение всего перечисленного различно, но общее у них, несомненно, есть – все они, в той или иной степени, являются источниками электромагнитных излучений.  
Поговорим об этом более подробно.

Компьютеры и дисплеи телевизоров являются наиболее распространенными источниками электромагнитных излучений. Не только телевизоры и компьютеры, оснащенные электронно-лучевой трубкой, создают сильное излучение. Ноутбуки и жидкокристаллические телевизоры, так же, являются источником электромагнитных излучений, только исходит оно не от трубки, а от различных преобразователей, схем управления и других элементов прибора. Учитывая это можно сказать, что наиболее опасное излучение исходит не от дисплея, а со стороны задней части монитора.
В России около 15% компьютеров соответствую международным стандартам, около 30% компьютеров признано частично соответствующими, а вот вся остальная масса, просто, не пригодна для использования.

Чтобы обезопасить себя от воздействия электромагнитных излучений, рекомендуется останавливать свой выбор на мониторах с голограммой ТСО.                                                                                                                                          
  

Бытовая техника (пылесосы, холодильники, стиральные машинки, тостеры и прочая кухонная утварь) хоть и создают небольшое излучение, но излишнего контакта с ним избегать необходимо. Если единичное разовое общение может быть и безвредно, то постоянное, многолетнее воздействие электромагнитных излучений, хоть и не больших, не лучшим образом сказывается на здоровье.   

Особое внимание следует уделить холодильникам нового поколения и микроволновым печам.

Эти приборы являются источниками излучения, но так как  электромагнитные излучения быстро затухают в атмосфере, то на расстоянии в полтора метра, воздействие от них находится в пределах нормы. 

Но, все же, по несколько часов в день мы получаем небезопасные дозы электромагнитного излучения.

 

Мобильные телефоны стали частью нас, и мало кто представляет себя без них. Кто – то часами увлеченно беседует по нему, держа у виска; кто – то носит на шее и т.д. Доказано, что частоты в 900-950 мегагерц излучают большинство сегодняшних мобильных телефонов, но мало кто из нас обращает на это достаточное внимание. Электромагнитные излучения, создаваемые мобильниками, вызывают головные боли, нарушения центральной нервной системы, и многие другие заболевания. Использование наушников и громкой связи поспособствует уменьшению электромагнитного воздействия.

Рабочее место в офисе, также, является «местом жительства» электромагнитных излучений.

Любая офисная оргтехника, работающая и неработающая, но включенная в розетку является источником излучения, исходящего от шнуров электроприборов. Минимизировать воздействие электромагнитных излучений можно, выдергивая из розеток шнуры всех неработающих электроприборов, а провода отодвигать от себя как можно дальше.

Необходимо уделить внимание заземлению, оно способно снизить уровень излучений в 5 – 10 раз.

 

Перечислив все возможные источники электромагнитных излучений, которые могут подстерегать нас в доме, квартире, офисе на этом, кажется, можно остановиться. Но нет, не стоит забывать об опасности, ожидающей нас на открытой местности и в транспортных средствах.

Линии электропередач, трамваи, троллейбусы  и другой транспорт на электрической тяге являются источником электромагнитных излучений, зачастую превышающих допустимые нормы.

 

Влияние электромагнитных излучений.

 

Воздействие ЭМИ на организм человека может быть различным. Чаще всего оно неощутимо, но при ЭМИ высокой мощности воздействие ощущается в качестве теплового облучения.

Очень мощные электромагнитные излучения способны выводить из строя не только приборы и технику, но и вызывать смертельный исход у людей.

В ходе исследований было доказано, что, даже, слабые электромагнитные излучения способны вызывать такие болезни как: болезни Паркинсона и Альцгеймера, амнезия, раковые заболевания, заболевания центральной нервной системы, иммунной и эндокринной систем, опухоль мозга, ухудшение зрения, импотенцию и повысить склонность к самоубийству.

Особенно опасны электромагнитные излучения для детей и беременных женщин, а главная сложность проблемы заключается в том, что воздействие оказывается не только на сегодняшних людей, но и на здоровье и интеллект будущих поколений.

 

Таким образом, электромагнитные излучения создают своеобразные «электромагнитные ванны», которые мы с вами ежедневно принимаем. Проводить измерения электромагнитных излучений необходимо, ведь только они способны предоставить информацию и существующей ситуации, и только они помогут вам правильно организовать деятельность по снижению воздействия  электромагнитных излучений.

Источник: ecofactor.ru/articles/


Базисные знания:

Глава 1. Общая характеристика электромагнитных полей

В современных условиях научно-технического прогресса в результате развития различных видов энергетики и промышленности электромагнитные излучения занимают одно из ведущих мест по своей экологической и производственной значимости среди других факторов окружающей среды.

В целом общий электромагнитный фон состоит из источников естественного (электрические и магнитные поля Земли, атмосферики, радиоизлучения Солнца и галактик) и искусственного (антропогенного) происхождения (телевизионные и радиостанции, линии электропередачи, электробытовая техника и другие) излучений.

Уровень естественного электромагнитного фона в некоторых случаях бывает на несколько порядков ниже уровней электромагнитных излучений, создаваемых антропогенными источниками. Электромагнитные излучения космического, околоземного и биосферного пространств играют определенную роль в организации жизненных процессов на Земле, и в ряде случаев выявляется их биологическая значимость.

 

1.1. Электромагнитные излучения радиочастот и сверхвысоких частот

ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ - это особая форма материи, посредством которой осуществляется взаимодействие между заряженными частицами. Представляет собой взаимосвязан­ные переменные электрическое поле и магнитное поле. Взаимная связь электрического Е и магнитного Н полей заключается в том, что всякое изменение одного из них приводит к появ­лению другого: переменное электрическое поле, порождаемое уско­ренно движущимися зарядами (источником), возбуждает в смежных областях пространства переменное магнитное поле, которое, в свою очередь, возбуждает в прилегающих к нему областях пространства переменное электрическое поле, и т. д. Таким образом, электромагнитное поле распространяется от точки к точке простран­ства в виде электромагнитных волн, бегущих от источника. Благодаря конечности скорости распространения электромагнитное поле может существовать автономно от породившего его источ­ника и не исчезает с устранением источника (например, радио­волны не исчезают с прекращением тока в излучившей их антенне).

Электромагнитное поле в вакууме описывается напряженностью электри­ческого поля Е и магнитной индукцией В. Электромагнитное поле в среде характеризуется дополнительно двумя вспомогательными величина­ми: напряженностью магнитного поля Н и электрической индукцией D. Связь компонентов электромагнитного поля с зарядами и то­ками описывается уравнениями Максвелла.

ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ представляют собой электромагнитные колебания, распространяющиеся в пространстве с конеч­ной скоростью, зависящей от свойств среды (рис. 1).

Рис. 1. Электромагнитные волны

Существо­вание электромагнитных волн предсказано английским физиком М. Фарадеем в 1832 г. Другой английский ученый, Дж. Максвелл, в 1865 г. теоретически показал, что электромагнитные колебания не остаются локализован­ными в пространстве, а распространяются во все стороны от источника. Теория Максвелла позволила единым образом подойти к описанию радио­волн, оптического излучения, рентгеновского излучения, гамма-излучения. Оказалось, что все эти виды излуче­ния – электромагнитные волны с различной длиной волны λ, т. е. родственны по своей природе. Каждое из них имеет своё определён­ное место в единой шкале электромагнитных волн (рис. 2).

Рис. 2. Шкала электромагнитных волн

Распространяясь в средах, электромагнитные волны, как и всякие другие волны, могут испытывать преломление и отражение на границе раздела сред, дисперсию, поглощение, интерференцию; при распространении в неоднородных средах наблюдаются дифракция волн, рассеяние волн и другие явления.

Электромагнитные волны различных диапазонов длин волн характеризуются различными способами возбуждения и регистрации, по-разному взаимо­действуют с веществом. Процессы излучения и поглощения электромагнитных волн от самых длинных до ИК излучения достаточно полно описываются соотношениями классической электро­динамики.

В диапазонах более коротких длин волн, в особен­ности в диапазонах рентгеновских и γ-лучей, доминируют процессы, имеющие квантовую природу, и могут быть описаны только в рамках квантовой электроди­намики на основе представлении о дискретности этих процессов.

Электромагнитные волны широко используются в радиосвязи, радиолокации, телевидении, медицине, биологии, физике, астрономии и др. областях науки и техники.

Радиочастоты и сверхвысокие частоты являются составной частью спектра электромагнитных излучений в частотном диапазоне от единиц Гц до 300 ГГц. Основными параметрами ЭМИ являются длина волны (λ) и частота (f), которая связана с длиной волны обратной зависимостью (для условий распространения волны в воздухе): f = с/ λ , где с - скорость света. Частоты колебаний ЭМИ измеряются в Герцах (Гц): 1 килогерц (кГц) = 103  Гц, 1 мегагерц (МГц)=106 ; Гц, 1 гигагерц (ГГц) = 109 Гц. Классификация РЧ и СВЧ приведена в табл. 1. На практике при оценке электромагнитной обстановки очень часто приходится учитывать отдельно или частоту колебаний, или длину волны.

ТАБЛИЦА 1

Электромагнитные излучения промышленной частоты

Частот­
ный
диапа-
зон

Частота

Наименование частот

Длина
волны

Наименование волн

Междуна-
родное

Принятое в
гигиенической
практике

Междуна-
родное

Принятое в
гигиенич-
еской
практике

--

> 3 Гц и
менее

нет

ИЗЧ
(инфра-
звуковая частота)

 

РЧ
(радио-
частоты)

10 км
и более

нет

нет

1

> 3-30 Гц

КНЧ
(крайне
низкая
частота)

< 10-104 км

дека-
метровые

нет

2

> 30-300 Гц

СНЧ
(сверх-
низкая частота)
 

 

ЗЧ
(звуковая частота)

< 104 -103 км

мега-
метровые

нет

3

> 0,3-3 кГц

ИНЧ
(инфра-
низкая частота)

< 103 -102 км

гекто-
метровые

нет

4

> 3-30 кГц

ОНЧ
(очень
низкая
частота)

< 100-10 км

мериа-
метровые

нет

5

> 30-300 кГц

НЧ
(низкая
частота)
ВЧ
(высокая частота)

 

 

< 10-1 км

кило-
метровые
ДВ
(длинные волны)

6

> 0,3-3 МГц

СЧ
(средняя частота)

< 1-0,1 км

гекто-
метровые
СВ
(средние волны)

7

> 3-30 МГц

ВЧ
(высокая частота)

< 100-10 м

дека-
метровые
КВ
(короткие волны)

8

> 30-300 МГц

ОВЧ
(очень
высокая
частота)
УВЧ
(ультра-
высокая частота)

< 10-1 м

метровые УКВ
(ультра-
короткие
волны)

9

> 0,3-3 ГГц

УВЧ
(ультра-
высокая
частота )
СВЧ
(сверх-
высокая
частота)

 

 

< 1-0,1 м

деци-
метровые
МКВ
(микро-
волны)

 

 

10

> 3-30 ГГц

СВЧ
(сверх-
высокая
частота)

10-1 см

санти-
метровые

11

> 30-300 ГГц

КВЧ
(крайне
высокая
частота)

< 10-1 мм

милли-
метровые

Эти излучения не являются каким-то особенным лучевым фактором, а представляют лишь частный случай электромагнитных излучений сверхнизкочастотного диапазона (СНЧ) - 50/60 Гц.

 

1.2. Электрические поля

Электрическое поле представляет собой частную форму проявления электромагнитного поля. В своем проявлении это силовое поле, основным свойством которого является способность воздействовать на внесенный в него электрический заряд с силой, не зависящей от скорости заряда. Источниками электрического поля могут быть электрические заряды (движущиеся и неподвижные) и изменяющиеся во времени магнитные поля.

Основная количественная характеристика электрического поля – напряженность электрического поля Е.

Электрическое поле в среде наряду с напряженностью характеризуется вектором электрической индукции D . В общем случае электрическое поле описывается уравнениями Максвелла.

 

1.3. Магнитные поля

Магнитное поле представляет собой частную форму электромагнитного поля. В своем проявлении это силовое поле, основным свойством которого является способность воздействовать на движущиеся электрические заряды (в т.ч. на проводники с током), а также на магнитные тела независимо от состояния их движения. Источниками магнитного поля могут быть движущиеся электрические заряды (проводники с током), намагниченные тела и изменяющиеся во времени электрические поля. Основная количественная характеристика магнитного поля – магнитная индукция В, которая определяет силу, действующую в данной точке поля в вакууме на движущийся электрический заряд и на тела, имеющие магнитный момент.

В материальных средах для магнитного поля вводится дополнительная характеристика – напряженность магнитного поля Н, которая связана с магнитной индукцией соотношением: Н = В/m , где m - магнитная проницаемость среды.

     

 

Рис. 3. Магнитное поле создается при движении
электрических зарядов по проводнику

 

1.4. Источники электромагнитных излучений

1.4.1. Радиочастоты и сверхвысокие частоты

Источниками электромагнитных излучений радиочастот (ЭМИ РЧ) и сверхвысоких частот (СВЧ) являются технические средства и изделия, которые предназначены для применения в различных сферах человеческой деятельности и в основе которых используются физические свойства этих излучений: распространение в пространстве и отражение, нагрев материалов, взаимодействие с веществами и т. п., а также устройства, предназначенные не для излучения электромагнитной энергии в пространство, а для выполнения какой-то иной задачи, но при работе которых протекает электрический ток, создающий паразитное электромагнитное излучение. Свойства ЭМИ РЧ и СВЧ распространяться в пространстве и отражаться от границы двух сред используются в связи (радио- и телестанции, ретрансляторы, радио- и сотовые телефоны), радиолокации (радиолокационные комплексы различного функционального назначения, навигационное оборудование). Способность ЭМИ РЧ и СВЧ нагревать различные материалы используется в различных технологиях по обработке материалов, полупроводников, сварки синтетических материалов, в приготовлении пищевых продуктов (микроволновые печи), в медицине (физиотерапевтическая аппаратура).

Микроволновая печь (или СВЧ-печь) в своей работе использует для разогрева пищи электромагнитное излучение, называемое также микроволновым излучением или СВЧ-излучением. Рабочая частота СВЧ-излучения микроволновых печей составляет 2,45 ГГц. Именно этого излучения и боятся многие люди. Однако современные микроволновые печи оборудованы достаточно совершенной защитой, которая не дает электромагнитному излучению вырываться за пределы рабочего объема. Вместе с тем, нельзя говорить, что излучение совершенно не проникает вне микроволновой печи. По разным причинам часть электромагнитного излучения проникает наружу, особенно интенсивно, как правило, в районе правого нижнего угла дверцы.

Непосредственными источниками электромагнитного излучения являются те части технических изделий, которые способны создавать в пространстве электромагнитные волны. В радиоаппаратуре это антенные системы, генераторные лампы, катодные выводы магнетронов, места неплотного сочленения фидерных трактов, разэкранированные места генераторных шкафов, экраны электронных визуальных средств отображения информации; на установках по термообработке материалов - рабочие индукторы и конденсаторы, согласующие трансформаторы, батареи конденсаторов, места разэкранирования фидерных линий.

Радары

Радиолокационные станции оснащены, как правило, антеннами зеркального типа и имеют узконаправленную диаграмму излучения в виде луча, направленного вдоль "оптической оси".

Радиолокационные системы работают на частотах от 500 МГц до 15 ГГц, однако отдельные системы могут работать на частотах до 100 ГГц. Создаваемый ими ЭМ-сигнал принципиально отличается от излучения других источников. Связано это с тем, что периодическое перемещение антенны в пространстве приводит к пространственной прерывистости облучения. Временная прерывистость облучения обусловлена цикличностью работы радиолокатора на излучение. Время наработки в различных режимах работы радиотехнических средств может исчисляться от нескольких часов до суток. У метеорологических радиолокаторов с временной прерывистостью 30 мин - излучение, 30 мин - пауза, суммарная наработка не превышает 12 ч, в то время как радиолокационные станции аэропортов в большинстве случаев работают круглосуточно. Ширина диаграммы направленности в горизонтальной плоскости обычно составляет несколько градусов, а длительность облучения за период обзора составляет десятки миллисекунд.

Радары метрологические могут создавать на удалении 1 км плотность потока энергии (ППЭ) ~ 100 Вт/м2 (эта величина на 6 порядков превышает величину, которая считается безопасной, но с поправкой, что это очень кратковременное излучение) за каждый цикл облучения. Радиолокационные станции аэропортов создают ППЭ ~ 0,5 Вт/м2 на рас­стоянии 60 м. Морское радиолокационное оборудование устанавливается на всех кораблях, обычно оно имеет мощность передатчика на порядок меньшую, чем у аэродромных радаров, поэтому в обычном режиме сканирования ППЭ, создаваемое на расстоянии нескольких метров, не превышает 10 Вт/м2. Сравнение уровней создаваемых радарами излучений с другими источниками СВЧ-диапазона приведено на рис. 4.

Рис. 4. Уровни ЭМИ-радаров в сравнении
с другими источниками СВЧ-диапазона

Возрастание мощности радиолокаторов различного назначения и использование остронаправленных антенн кругового обзора приводит к значительному увеличению интенсивности ЭМИ СВЧ-диапазона и создает на местности зоны большой протяженности с высокой плотностью потока энергии. Наиболее неблагоприятные условия отмечаются в жилых районах городов, в черте которых размещаются аэропорты: Иркутск, Сочи, Сыктывкар, Ростов-на-Дону и ряд других.

Системы спутниковой связи

Системы спутниковой связи состоят из приемопередающей станции на Земле и спутника, находящегося на орбите. Диаграмма направленности антенны станций спутниковой связи имеет ярко выраженный узконаправленный основной луч – главный лепесток. ППЭ в главном лепестке диаграммы направленности может достигать нескольких сотен Вт/м2 вблизи антенны, создавая также значительные уровни излучения на большом удалении. Например, станция мощностью 225 кВт, работающая на частоте 2,38 ГГц, создает на расстоянии 100 км ППЭ равное 2,8 Вт/м2 Однако рассеяние энергии от основного луча очень небольшое и происходит больше всего в районе размещения антенны.

Типичный расчетный график распределения ППЭ на высоте 2 м от поверхности земли в районе размещения антенны спутниковой связи приведен на рис. 5.

Рис. 5. График распределения плотности потока
электромагнитного поля на высоте 2 м от поверхности
земли в районе установки антенны спутниковой связи

Существуют два основных опасных случая облучения:

•  непосредственно в районе размещения антенны;

•  при приближении к оси главного луча на всем его протяжении.

Теле- и радиостанции

На территории России в настоящее время размещается значительное количество передающих радиоцентров различной принадлежности.

Передающие радиоцентры (ПРЦ) размещаются в специально отведенных для них зонах и могут занимать довольно большие территории (до 1000 га). По своей структуре они включают в себя одно или несколько технических зданий, где находятся радиопередатчики, и антенные поля, на которых располагаются до нескольких десятков антенно-фидерных систем (АФС).

Зону возможного неблагоприятного действия ЭМИ, создаваемых ПРЦ, можно условно разделить на две части.

Первая часть зоны – это собственно территория ПРЦ, где размещены все службы, обеспечивающие работу радиопередатчиков и АФС. Это территория охраняется, и на нее допускаются только лица, профессионально связанные с обслуживанием передатчиков, коммутаторов и АФС. Вторая часть зоны – это прилегающие к ПРЦ территории, доступ на которые не ограничен и где могут размещаться различные жилые постройки, в этом случае возникает угроза облучения населения, находящегося в этой части зоны.

Расположение ПРЦ может быть различным, например в Москве и московском регионе характерно размещение в непосредственной близости или среди жилой застройки.

На территориях размещения передающих радиоцентров, а нередко и за их пределами, наблюдаются высокие уровни ЭМИ низкой, средней и высокой частоты (ПРЦ НЧ, СЧ и ВЧ). Детальный анализ электромагнитной обстановки на территориях ПРЦ свидетельствует о ее крайней сложности, связанной с индивидуальным характером интенсивности и распределения ЭМИ для каждого радиоцентра. В связи с этим специальные исследования такого рода проводятся для каждого отдельного ПРЦ.

Широко распространенными источниками ЭМИ в населенных местах в настоящее время являются радиотехнические передающие центры (РТПЦ), излучающие в окружающую среду ультракороткие волны ОВЧ и УВЧ-диапазонов.

Сравнительный анализ санитарно-защитных зон (СЗЗ) и зон ограничения застройки в зоне действия таких объектов показал, что наибольшие уровни облучения людей и окружающей среды наблюдаются в районе размещения РТПЦ «старой постройки» с высотой антенной опоры не более 180 м. Наибольший вклад в суммарную интенсивность воздействия вносят «уголковые» трех- и шестиэтажные антенны ОВЧ ЧМ-вещания.

Сотовая связь

Основными элементами системы сотовой связи являются базовые станции (БС), которые поддерживают радиосвязь с мобильными радиотелефонами (МРТ). Базовые станции БС и МРТ являются источниками электромагнитного излучения в УВЧ-диапазоне.

Некоторые технические характеристики действующих в настоящее время в России стандартов системы сотовой радиосвязи приведены в табл. 2.

ТАБЛИЦА 2

Краткие технические характеристики стандартов системы
сотовой радиосвязи, действующих в России

Наименование стандарта

Диапазон
рабочих
частот
БС

Диапазон
рабочих
частот
МРТ

Макси-
мальная
излучаемая
мощность
БС

Макси-
мальная
излучаемая
мощность
МРТ

Радиус
"соты"

NMT-450
аналоговый

463 – 467,5 МГц

453 – 457,5 МГц

100 Вт

1 Вт

1 – 40 км

AMPS
аналоговый

869 – 894 МГц

824 – 849 МГц

100 Вт

0,6 Вт

2 – 20 км

D-AMPS
(IS-136)
цифровой

869 – 894 МГц

824 – 849 МГц

50 Вт

0,2 Вт

0,5 – 20 км

CDMA
цифровой

869 – 894 МГц

824 – 849 МГц

100 Вт

0,6 Вт

2 – 40 км

GSM-900
цифровой

925 – 965 МГц

890 – 915 МГц

40 Вт

0,25 Вт

0,5 – 35 км

GSM-1800
(DCS)
цифровой

1805 – 1880 МГц

1710 – 1785 МГц

20 Вт

0,125 Вт

0,5 – 35 км

Базовые станции поддерживают связь с находящимися в их зоне действия мобильными радиотелефонами и работают в режиме приема и передачи сигнала. В зависимости от стандарта, БС излучают электромагнитную энергию в диапазоне частот от 463 до 1880 МГц.

Антенны БС устанавливаются на высоте 15–100 метров от поверхности земли на уже существующих постройках (общественных, служебных, производственных и жилых зданиях, дымовых трубах промышленных предприятий и т. д.) или на специально сооруженных мачтах (см. рис. 6 и 7).

Рис. 6. Базовая станция сотовой связи

Рис. 7. Мачта для установки антенн БС

К выбору места размещения антенн БС с точки зрения санитарно-гигиенического надзора не предъявляется никаких иных требований, кроме соответствия интенсивности электромагнитного излучения значениям предельно допустимых уровней, установленных действующими Санитарными правилами и нормами СанПиН 2.2.4/2.1.8.055-96 «Электромагнитные излучения радиочастотного диапазона (ЭМИ РЧ)» в местах, определенных этими Санитарными правилами и нормами.

Среди установленных в одном месте антенн БС имеются как передающие (или приемопередающие), так и приемные антенны, которые не являются источниками ЭМИ.

Передающие (приемопередающие) антенны БС могут быть двух типов:

•  с круговой диаграммой направленности в горизонтальной плоскости (тип «Omni») – рис. 8;

•  направленные (секторные) – рис. 9.

Рис. 8. Диаграмма направленности антенны типа «Omni»

Рис. 9. Диаграмма направленности секторной антенны

Согласно Санитарным нормам и правилам, антенны БС размещаются на уже существующих постройках любого типа и на специально сооружаемых мачтах. Среди установленных в одном месте антенн БС имеются как передающие (или приемопередающие), так и приемные антенны, которые не являются источниками ЭМИ. Диаграмма направленности антенн в вертикальной плоскости построена таким образом, что основная энергия излучения (более 90 %) сосредоточена в довольно узком «луче» (рис. 10).

Рис. 10. Диаграмма направленности антенн

Он всегда направлен в сторону от сооружений, на которых находятся антенны БС, и выше прилегающих построек, что является необходимым условием для нормального функционирования системы сотовой связи.

Антенны БС не излучают постоянную мощность 24 часа в сутки, а имеют переменный график излучения, определяемый загрузкой, то есть наличием владельцев сотовых телефонов в зоне обслуживания конкретной базовой станции и их желанием воспользоваться телефоном для разговора (рис.11). Для станций, расположенных в различных районах города, график загрузки различный. В ночные часы загрузка БС практически равна нулю, т. е. станции в основном «молчат».

Рис. 11. График загрузки БС в черте города
в зависимости от времени суток

Мобильный радиотелефон (МРТ) представляет собой малогабаритный приемопередатчик. В зависимости от стандарта телефона, передача ведется в диапазоне частот 453 – 1785 МГц. Мощность излучения МРТ является величиной переменной, в значительной степени зависящей от состояния канала связи «мобильный радиотелефон – базовая станция», т. е. чем выше уровень сигнала БС в месте приема, тем меньше мощность излучения МРТ. Максимальная мощность находится в границах 0,125–1 Вт, однако в реальной обстановке она обычно не превышает 0,05 – 0,2 Вт.

Персональный компьютер

Рис. 12. Основные излучающие элементы ПК

Основными составляющими частями персонального компьютера (ПК) (рис. 12) являются: системный блок (процессор) и разнообразные устройства ввода/вывода информации: клавиатура, дисковые накопители, принтер, сканер и т. п. Каждый персональный компьютер включает средство визуального отображения информации, называемое по-разному – монитор, дисплей, главным компонентом которого часто является устройство на основе электронно-лучевой трубки. ПК часто оснащают сетевыми фильтрами (например, типа «Pilot»), источниками бесперебойного питания и другим вспомогательным электрооборудованием. Все эти элементы при работе ПК формируют сложную электромагнитную обстановку на рабочем месте пользователя (см. таблицу 3). Спектральная характеристика излучения ПК представлена на рис. 13.

ТАБЛИЦА 3

Частотные характеристики электромагнитного излучения ПК

Источник

Диапазон частот
(первая гармоника)

Монитор
сетевой трансформатор блока питания

50 Гц

статический преобразователь напряжения в импульсном блоке питания

20 - 100 кГц

блок кадровой развертки и синхронизации

48 - 160 Гц

блок строчной развертки и синхронизации

15 - 110 кГц

ускоряющее анодное напряжение монитора (только для мониторов с ЭЛТ)

0 Гц (электростатика)

Системный блок (процессор)

50 Гц - 1000 МГц

Устройства ввода/вывода информации

0 Гц, 50 Гц

Источники бесперебойного питания

50 Гц, 20 - 100 кГц

Рис. 13. Спектральная характеристика ПК

Кроме того, на рабочем месте пользователя источниками более мощными, чем компьютер, могут выступать объекты: ЛЭП, трансформаторные подстанции, распределительные щиты, электропроводка, бытовые и конторские электроприборы (у всех источников первая гармоника – 50 Гц), телевизоры (0–15,6 кГц), соседние ПК (0-1000 МГц) и т. д.

Общая картина поля на рабочем месте может быть очень сложной. (рис. 14).

Рис. 14. Пример типичного распределения магнитного поля
в диапазоне от 5 Гц до 2 кГц в помещении, оснащенном компьютерами

 

1.4.2. Электромагнитные излучения промышленной частоты

Основными источниками электромагнитных излучений промышленной частоты (50/60 Гц) являются элементы токопередающих систем различного напряжения (линии электропередачи, открытые распределительные устройства, их составные части), электроприборы и аппаратура промышленного и бытового назначения, потребляющая электроэнергию.

Бытовые приборы

Из бытовых приборов наиболее мощными следует признать СВЧ-печи, различного рода грили, холодильники с системой «без инея», кухонные вытяжки, электроплиты, телевизоры. Реально создаваемое ЭМИ в зависимости от конкретной модели и режима работы может сильно различаться среди оборудования одного типа (рис. 15). Все нижеприведенные данные относятся к магнитному полю промышленной частоты 50 Гц. Согласно современным представлениям, оно может быть опасным для здоровья человека, если происходит продолжительное облучение (регулярно, не менее 8 часов в сутки, в течение нескольких лет) с уровнем выше 0,2 мкТл. Средние уровни магнитного поля промышленной частоты бытовых электроприборов на расстоянии 0,3 м показаны на рис. 15, а изменение уровня в зависимости от расстояния на рис.16.

Рис. 15. Уровни излучений магнитного поля бытовых приборов
на расстоянии 0,3 м

Рис. 16. Изменение уровня магнитного поля промышленной частоты
бытовых электроприборов в зависимости от расстояния

В табл. 4 представлены данные о расстоянии, на котором фиксируется магнитное поле промышленной частоты (50 Гц) величиной 0,2 мкТл при работе ряда бытовых приборов.

ТАБЛИЦА 4

Распространение магнитного поля промышленной частоты
от бытовых электрических приборов (выше уровня 0,2 мкТл)

Источник

Расстояние, на котором
фиксируется величина
больше 0,2 мкТл

Холодильник, оснащенный системой
"No frost" (во время работы компрессора)
1,2 м от дверцы;
1,4 м от задней стенки
Холодильник обычный
(во время работы компрессора)
0,1 м от электродвигателя компрессора
Утюг (режим нагрева) 0,25 м от ручки
Телевизор 14" 1,1 м от экрана;
1,2 м от боковой стенки
Электрорадиатор 0,3 м
Торшер с двумя лампами по 75 Вт 0,03 м (от провода)
Электродуховка 0,4 м от передней стенки
Аэрогриль 1,4 м от боковой стенки

Электропроводка

Среди наиболее опасных источников, излучающих в жилые квартиры, но находящихся вне их , особое место занимают трансформаторные подстанции, домовые распределительные щиты электропитания, кабели электропитания. Наличие их можно в большинстве случаев определить визуально, однако безопасное расстояние можно определить только с помощью специальных приборов. Типичное безопасное расстояние – 1,5-5 метров. Пример распределения магнитного поля промышленной частоты в комнате, в которую излучает внешний источник, приведен на рис. 17.

Рис. 17. Источник излучения - общий силовой кабель подъезда.
Зона для выбора спального места (безопасная зона) отмечена звездочкой

Наибольшее влияние на электромагнитную обстановку жилых помещений в диапазоне промышленной частоты 50 Гц оказывает электротехническое оборудование здания, а именно кабельные линии, подводящие электричество ко всем квартирам и другим потребителям системы жизнеобеспечения здания, и распределительные щиты и трансформаторы. В помещениях, смежных с этими источниками, обычно повышен уровень магнитного поля промышленной частоты. Уровень электрического поля промышленной частоты при этом обычно невысокий и не превышает ПДУ для населения 500 В/м.

Примеры распределения магнитного поля промышленной частоты в помещениях приведены на рис. 18, 19. Звездочкой («) показана зона с безопасным для здоровья уровнем магнитного поля.

Рис. 18. Распределение магнитного поля промышленной частоты в
жилом помещении. Источник поля - распределительный пункт
электропитания, находящийся в смежном нежилом помещении

Рис. 19. Распределение магнитного поля промышленной частоты
в жилом помещении. Источник поля - кабельная линия,
проходящая в подъезде по внешней стене комнаты

Линии электропередачи

В зависимости от назначения и номинального напряжения линии электропередачи (ЛЭП) подразделяются на:

- сверхдальние (500 кВ и выше);

- магистральные (220-330 кВ);

- распределительные (30-150 кВ);

- подводящие (менее 20 кВ).

Провода работающей линии электропередачи создают в прилегающем пространстве электрическое и магнитное поля промышленной частоты. Расстояние, на которое распространяются эти поля от проводов линии, достигает десятков метров.

Дальность распространения электрического поля зависит от класса напряжения ЛЭП (цифра, обозначающая класс напряжения, стоит в названии ЛЭП – например, ЛЭП 220 кВ): чем выше напряжение – тем больше зона повышенного уровня электрического поля, при этом размеры зоны не изменяются в течение времени работы ЛЭП.

Дальность распространения магнитного поля зависит от величины протекающего тока или от нагрузки линии. Поскольку нагрузка ЛЭП может неоднократно изменяться как в течение суток, так и с изменением сезонов года, размеры зоны повышенного уровня магнитного поля также меняются.

Автор: Грачев Н.Н. Кафедра РТУиС, МИЭМ


 

Партнеры:

 Форум
Денис
Артем
Татьяна
Любовь
Алексей
Владимир
Андрей

 

Официальные сайты:

L&S
Факты
Президент
Клуб

 

 

Главная ]

© 2010 Andrey Savchenko
Сайт управляется системой uCoz